Bulletin

wall bulletin
Annex A. Agroclimatic indicators and BIOMSSAnnex

Authors: 超级管理员 | Edit: mazh

Annex A. Agroclimatic indicators and BIOMSS

We also stress that the reference period, referred to as "average" in this bulletin covers the 15- year period from 2007 to 2021. Although departures from the 2007-2021 are not anomalies (which, strictly, refer to a "normal period" of 30 years), we nevertheless use that terminology. The specific reason why CropWatch refers to the most recent 15 years is our focus on agriculture, as already mentioned in the previous paragraph. 15 years is deemed an acceptable compromise between climatological significance and agricultural significance: agriculture responds much faster to persistent climate variability than 30 years, which is a full generation. For "biological" (agronomic) indicators used in subsequent chapters we adopt an even shorter reference period of 5 years (i.e. 2017-2021) but the BIOMSS indicator is nevertheless compared against the longer 15YA (fifteen- year average). This makes provision for the fast response of markets to changes in supply but also to the fact that in spite of the long warming trend, some recent years (e.g. 2008 or 2010-13) were below the trend.

Correlations between variables (RAIN, TEMP, RADPAR and BIOMSS) at MRU scale derive directly from climatology. For instance, the positive correlation between rainfall and temperature results from high rainfall in equatorial, i.e. in warm areas.

Considering the size of the areas covered in this section, even small departures may have dramatic effects on vegetation and agriculture due to the within-zone spatial variability of weather. It is important to note that we have adopted an improved calculation procedure of the biomass production potential in the bulletin based on previous evaluation. The improved approach includes sunshine (RADPAR), TEMP and RAIN.



Table A.1 January 2022 – April 2022 agroclimatic indicators and biomass by global Monitoring and Reporting Unit (MRU)

65 Global MRUs

RAIN Current

(mm)

RAIN 15YA dep. (%)

TEMP Current

(°C)

TEMP 15YA dep. (°C)

RADPAR Current(MJ/m2)

RADPAR 15YA dep. (%)

BIOMSS Current (gDM/m2)

BIOMSS 15YA dep. (%)

C01

Equatorial   central Africa

661

-14

23.3

-0.1

1225

2

1148

-4

C02

East African highlands

139

-49

20.2

0.4

1382

3

543

-18

C03

Gulf   of Guinea

122

-13

27.1

-0.1

1326

1

617

-5

C04

Horn of Africa

315

-35

22.1

0.5

1340

5

799

-13

C05

Madagascar   (main)

1317

11

22.4

0.1

1147

-2

1430

2

C06

Southwest Madagascar

384

-30

25.6

0.5

1256

1

1008

-7

C07

North   Africa-Mediterranean

172

-19

10.3

-0.4

956

0

452

-7

C08

Sahel

29

30

27.1

-0.5

1369

0

360

-9

C09

Southern   Africa

557

-7

22.1

0.2

1222

0

969

-6

C10

Western Cape (South Africa)

86

-29

19.3

0.2

1293

2

542

-8

C11

British   Columbia to Colorado

324

-11

-2.8

-0.3

715

1

289

-6

C12

Northern Great Plains

231

0

-0.6

-0.9

729

0

331

-12

C13

Corn   Belt

456

8

-0.3

-0.6

649

-1

373

-6

C14

Cotton Belt to Mexican Nordeste

372

-6

11.4

0.0

909

5

661

-4

C15

Sub-boreal   America

271

26

-8.6

-0.7

489

-8

181

-12

C16

West Coast (North America)

326

-34

7.3

0.0

821

6

406

-24

C17

Sierra   Madre

50

-41

16.6

0.0

1326

3

359

-15

C18

SW U.S. and N. Mexican highlands

75

-39

8.9

-0.3

1098

3

316

-17

C19

Northern   South and Central America

435

3

23.2

-0.1

1176

1

816

3

C20

Caribbean

253

26

23.7

0.3

1189

3

835

12

C21

Central-northern   Andes

871

-12

15.3

0.0

1063

2

822

-2

C22

Nordeste (Brazil)

202

-51

26.6

1.1

1309

4

791

-21

C23

Central   eastern Brazil

467

-50

24.9

1.4

1234

4

1003

-26

C24

Amazon

1034

-19

24.5

0.3

1143

7

1404

-3

C25

Central-north   Argentina

662

25

22.7

-0.6

1143

0

1067

3

C26

Pampas

513

5

22.4

0.1

1174

-1

1027

3

C27

Western   Patagonia

367

44

12.9

-0.6

1200

0

604

4

C28

Semi-arid Southern Cone

271

42

17.6

-0.7

1283

-1

628

6

C29

Caucasus

303

-10

3.0

-0.1

810

1

437

-5

C30

Pamir area

289

-31

4.9

1.8

946

5

415

-5

C31

Western   Asia

155

-20

8.6

1.6

899

0

399

-8

C32

Gansu-Xinjiang (China)

113

10

-2.1

0.2

870

-2

210

1

C33

Hainan   (China)

396

42

21.0

-0.3

925

-3

912

19

C34

Huanghuaihai (China)

92

-6

6.4

0.5

895

-2

274

-11

C35

Inner   Mongolia (China)

61

10

-4.7

0.0

883

-2

193

6

C36

Loess region (China)

99

10

2.5

0.5

940

-4

289

3

C37

Lower   Yangtze (China)

594

19

10.7

0.3

700

-2

797

6

C38

Northeast China

115

16

-5.8

0.7

763

-3

244

15

C39

Qinghai-Tibet   (China)

362

-3

0.4

0.0

1045

0

315

-1

C40

Southern China

426

13

15.2

0.0

865

4

789

7

C41

Southwest   China

401

31

8.6

0.1

746

-6

645

12

C42

Taiwan (China)

362

25

19.3

0.0

960

-2

773

8

C43

East   Asia

287

-1

-1.2

0.8

764

-2

331

4

C44

Southern Himalayas

149

-12

18.7

0.1

1132

1

502

-2

C45

Southern   Asia

64

-25

25.6

-0.1

1306

2

537

-2

C46

Southern Japan and the southern fringe of the Korea peninsula

467

-5

7.3

0.9

815

1

627

-1

C47

Southern   Mongolia

59

-3

-11.8

0.5

802

-3

113

-8

C48

Punjab to Gujarat

56

-12

23.5

0.9

1208

1

473

6

C49

Maritime   Southeast Asia

1292

-2

24.3

0.2

1158

5

1444

3

C50

Mainland Southeast Asia

302

27

24.7

0.0

1185

-1

824

12

C51

Eastern   Siberia

206

-2

-8.4

1.5

558

-1

190

3

C52

Eastern Central Asia

94

7

-11.7

0.8

693

-2

156

2

C53

Northern   Australia

954

-7

26.3

0.6

1302

5

1322

-3

C54

Queensland to Victoria

325

39

21.0

0.1

1143

-4

814

14

C55

Nullarbor   to Darling

113

6

21.3

0.2

1261

2

616

6

C56

New Zealand

336

13

14.8

0.2

1025

1

720

-2

C57

Boreal   Eurasia

322

5

-3.4

1.0

385

-1

258

2

C58

Ukraine to Ural mountains

293

13

-0.7

1.1

386

-12

345

2

C59

Mediterranean   Europe and Turkey

270

-26

6.6

-0.5

820

5

517

-11

C60

W. Europe (non Mediterranean)

257

-22

4.5

0.2

600

5

481

-6

C61

Boreal   America

388

25

-6.8

1.1

401

-9

200

7

C62

Ural to Altai mountains

181

-3

-4.3

2.3

529

-4

277

12

C63

Australian   desert

146

32

22.4

0.0

1269

-1

624

4

C64

Sahara to Afghan deserts

55

-28

17.4

0.5

1162

1

358

-9

C65

Sub-arctic   America

66

-17

-22.1

0.7

306

-4

37

4

Table A.2  January 2022 – April 2022 agroclimatic indicators and biomass by country

Country code

Country name

RAIN Current (mm)

RAIN 15YA Departure (%)

TEMP Current (°C)

TEMP 15YA Departure(°C)

RADPAR Current (MJ/m2)

RADPAR 15YA Departure (%)

BIOMSS Current (gDM/m2)

BIOMSS    15YA Departure (%)

ARG

Argentina

532

34

21.6

-0.5

1173

0

962

8

AUS

Australia

325

18

21.7

0.2

1173

-2

794

10

BGD

Bangladesh

83

-40

23.2

-0.1

1188

0

524

-10

BRA

Brazil

628

-38

24.7

1.1

1214

4

1097

-19

KHM

Cambodia

410

27

26.6

-0.1

1192

1

969

14

CAN

Canada

346

15

-6.3

-0.5

523

-7

211

-8

CHN

China

352

19

6.7

0.3

800

-2

460

7

EGY

Egypt

49

-3

14.6

-1.0

993

-2

271

-8

ETH

Ethiopia

94

-48

20.8

0.3

1389

2

494

-17

FRA

France

259

-29

6.2

0.4

647

6

528

-7

DEU

Germany

293

-2

3.8

0.2

528

1

499

1

IND

India

64

-26

23.4

0.0

1256

1

487

-1

IDN

Indonesia

1323

-6

24.4

0.2

1169

6

1479

1

IRN

Iran

159

-25

8.7

1.0

1019

2

396

-13

KAZ

Kazakhstan

189

6

-2.5

2.3

606

-6

323

14

MEX

Mexico

123

0

18.9

-0.1

1257

2

446

-8

MMR

Myanmar

122

-5

21.5

0.3

1210

-3

548

1

NGA

Nigeria

101

-20

26.4

-0.6

1358

2

534

-2

PAK

Pakistan

185

-40

14.8

1.9

1088

5

452

-5

PHL

Philippines

956

48

24.6

0.0

1144

-1

1264

12

POL

Poland

262

1

2.6

0.2

482

1

455

-1

ROU

Romania

179

-31

3.0

-0.3

677

5

401

-16

RUS

Russia

246

10

-3.5

1.6

443

-9

277

6

ZAF

South Africa

137

-40

19.6

0.1

1282

2

605

-16

THA

Thailand

364

34

25.2

-0.2

1180

0

904

17

TUR

Turkey

352

-5

3.2

-1.0

831

2

491

-5

GBR

United   Kingdom

306

-21

6.1

0.8

463

7

535

-2

UKR

Ukraine

225

-7

1.8

0.2

502

-5

408

-6

USA

United   States

341

-5

4.8

-0.3

803

3

436

-8

UZB

Uzbekistan

228

-9

8.0

1.7

836

0

418

-4

VNM

Vietnam

381

24

20.7

-0.1

975

0

871

11

AFG

Afghanistan

183

-41

7.5

2.2

1017

5

421

-11

AGO

Angola

698

-14

21.9

-0.1

1198

2

1213

-2

BLR

Belarus

300

15

0.4

0.4

368

-11

367

-4

HUN

Hungary

141

-38

4.2

-0.4

671

6

393

-21

ITA

Italy

191

-51

6.4

-0.2

790

8

448

-22

KEN

Kenya

204

-55

21.6

0.6

1398

5

700

-21

LKA

Sri_Lanka

683

22

25.3

0.0

1249

0

1277

14

MAR

Morocco

184

-15

10.7

-0.2

1013

0

466

-5

MNG

Mongolia

70

1

-11.7

0.5

777

-2

154

1

MOZ

Mozambique

847

9

23.6

0.2

1179

-2

1269

0

ZMB

Zambia

919

-6

20.9

0.0

1166

0

1242

0

KGZ

Kyrgyzstan

351

12

-3.1

0.4

829

-1

301

5

Note: Departures are expressed in relative terms (percentage) forall variables, except for temperature, for which absolute departure in degrees Celsius is given. Zero means no change from the average value; relative departures are calculated as (C-R)/R*100, with C=current value and R=reference value, which is the fifteen-year average (15YA) for the same period between Oct- Jan.

 

 

Table A.3 Argentina, January 2022 – April 2022 agroclimatic indicators and biomass (by province)


RAIN Current (mm)

RAIN 15YA Departure (%)

TEMP Current (°C)

TEMP 15YA Departure(°C)

RADPAR Current (MJ/m2)

RADPAR 15YA Departure (%)

BIOMSS Current (gDM/m2)

BIOMSS 15YA Departure (%)

Buenos Aires

377

55

19.8

-1.0

1205

-1

887

18

Chaco

473

-6

25.4

0.6

1115

-2

1018

-6

Cordoba

443

58

21.3

-0.9

1227

1

924

10

Corrientes

667

29

24.8

0.9

1167

0

1117

4

Entre Rios

744

94

22.2

-0.7

1165

-2

1090

17

La Pampa

211

19

20.9

-0.9

1278

2

784

12

Misiones

528

-18

23.6

0.7

1207

0

1168

-4

Santiago Del   Estero

796

66

22.9

-1.1

1102

-1

1147

11

San Luis

181

-13

20.6

-0.8

1279

3

718

-5

Salta

1037

12

19.9

-0.3

1063

-1

1188

2

Santa Fe

593

58

23.1

-0.6

1151

-2

1058

14

Tucuman

975

57

18.9

-0.3

1101

-3

1079

6

 

Table A.4  Australia, January 2022 – April 2022 agroclimatic indicators and biomass (by state) 


RAIN Current (mm)

RAIN 15YA Departure (%)

TEMP Current (°C)

TEMP 15YA Departure(°C)

RADPAR Current (MJ/m2)

RADPAR 15YA Departure (%)

BIOMSS Current (gDM/m2)

BIOMSS 15YA Departure (%)

New South Wales

386

64

21.3

-0.3

1142

-7

909

24

South Australia

122

9

20.6

0.2

1174

-2

570

-1

Victoria

254

36

19.2

0.6

1113

-1

745

16

W. Australia

194

11

22.2

0.3

1267

2

652

4

 

Table A.5  Brazil, January 2022 – April 2022 agroclimatic indicators and biomass (by state)


RAIN Current (mm)

RAIN 15YA Departure (%)

TEMP Current (°C)

TEMP 15YA Departure (°C)

RADPAR Current (MJ/m2)

RADPAR 15YA Departure (%)

BIOMSS Current (gDM/m2)

BIOMSS 15YA Departure (%)

Ceara

359

-42

26.9

0.9

1279

3

1033

-16

Goias

288

-72

25.6

2.6

1277

5

779

-46

Mato Grosso Do Sul

295

-66

26.2

1.7

1172

-3

895

-35

Mato Grosso

656

-49

25.2

1.1

1226

10

1183

-22

Minas Gerais

477

-48

23.3

1.6

1261

5

923

-28

Parana

551

-35

22.7

1.3

1160

-1

1136

-13

Rio Grande Do Sul

560

3

22.3

0.6

1158

-2

1117

2

Santa Catarina

659

-13

20.2

0.5

1132

1

1234

2

Sao Paulo

439

-59

24.2

1.9

1173

2

935

-32

 

Table A.6  Canada, January 2022 – April 2022 agroclimatic indicators and biomass (by province) 


RAIN Current (mm)

RAIN 15YA Departure (%)

TEMP Current (°C)

TEMP 15YA Departure (°C)

RADPAR Current (MJ/m2)

RADPAR 15YA Departure (%)

BIOMSS Current (gDM/m2)

BIOMSS 15YA Departure (%)

Alberta

217

20

-5.5

-0.1

529

-5

244

-3

Manitoba

298

56

-9.3

-2.1

519

-10

170

-26

Saskatchewan

212

23

-7.3

-1.0

533

-7

212

-15

 

Table A.7  India, January 2022 – April 2022 agroclimatic indicators and biomass (by state) 


RAIN Current (mm)

RAIN 15YA Departure (%)

TEMP Current (°C)

TEMP 15YA Departure (°C)

RADPAR Current (MJ/m2)

RADPAR 15YA Departure (%)

BIOMSS Current (gDM/m2)

BIOMSS 15YA Departure (%)

Andhra Pradesh

25

-39

26.6

-0.2

1337

2

506

-2

Assam

335

-17

17.8

-0.9

1034

-1

690

-4

Bihar

29

-34

22.5

-0.2

1219

2

433

-7

Chhattisgarh

5

-83

24.0

-0.3

1317

4

435

-7

Daman and Diu

2

39

26.5

0.1

1359

-1

470

44

Delhi

96

67

20.4

-0.2

1124

-1

483

10

Gujarat

7

125

26.3

0.1

1320

0

467

16

Goa

5

-61

26.7

0.0

1361

-2

478

-4

Himachal Pradesh

246

-24

11.5

1.2

1096

5

481

-4

Haryana

108

59

20.5

0.3

1115

0

495

12

Jharkhand

13

-65

22.9

0.0

1269

4

421

-8

Kerala

213

-29

25.9

-0.1

1303

-1

787

-7

Karnataka

27

-58

26.0

0.0

1343

1

500

-8

Meghalaya

257

-13

18.3

-0.8

1083

-1

682

3

Maharashtra

4

-65

26.7

0.0

1345

1

463

-1

Manipur

176

-33

15.2

-0.3

1165

1

508

-17

Madhya Pradesh

5

-70

24.1

0.2

1284

3

426

-3

Mizoram

136

-26

17.5

-0.8

1208

-1

496

-13

Nagaland

360

-20

13.2

-1.5

1063

-1

697

-5

Orissa

15

-60

24.1

-0.3

1300

5

454

-6

Puducherry

114

-5

27.2

0.1

1378

0

718

6

Punjab

174

22

19.9

0.8

1067

2

537

4

Rajasthan

29

63

23.9

0.9

1218

0

454

10

Sikkim

62

-18

12.4

2.5

1239

-1

319

4

Tamil Nadu

129

-40

26.2

0.4

1313

-1

683

-6

Tripura

165

-32

21.5

-0.5

1166

0

598

-9

Uttarakhand

129

1

14.2

0.9

1158

2

439

6

Uttar Pradesh

42

-9

21.8

-0.2

1189

1

434

-4

West Bengal

40

-42

23.8

0.0

1226

2

477

-7

 

Table A.8  Kazakhstan, January 2022 – April 2022 agroclimatic indicators and biomass (by oblast)  


RAIN Current (mm)

RAIN 15YA Departure (%)

TEMP Current (°C)

TEMP 15YA Departure (°C)

RADPAR Current (MJ/m2)

RADPAR 15YA Departure (%)

BIOMSS Current (gDM/m2)

BIOMSS 15YA Departure (%)

Akmolinskaya

136

-8

-3.9

2.8

567

-6

299

16

Karagandinskaya

115

-9

-4.1

2.5

668

-3

299

14

Kustanayskaya

178

8

-3.3

3.1

491

-12

310

19

Pavlodarskaya

101

-15

-4.5

2.3

597

1

280

10

Severo kazachstanskaya

124

-22

-4.3

2.7

507

-2

282

17

Vostochno   kazachstanskaya

171

-6

-4.5

1.6

716

1

273

6

Zapadno kazachstanskaya

278

37

0.3

3.1

436

-24

397

18

 

Table A.9 Russia, January 2022 – April 2022 agroclimatic indicators and biomass (by oblast, kray and republic)


RAIN Current

(mm)

RAIN 15YA Departure (%)

TEMP Current (°C)

TEMP 15YA Departure (°C)

RADPAR Current (MJ/m2)

RADPAR 15YA Departure (%)

BIOMSS Current (gDM/m2)

BIOMSS 15YA Departure (%)

Bashkortostan Rep.

268

10

-4.0

2.4

392

-14

272

13

Chelyabinskaya   Oblast

173

1

-4.7

2.2

439

-11

266

13

Gorodovikovsk

213

-9

3.7

0.9

594

0

515

8

Krasnodarskiy Kray

255

0

-1.5

0.7

565

0

340

2

Kurganskaya Oblast

167

-4

-4.7

2.4

411

-8

262

13

Kirovskaya Oblast

290

1

-4.2

1.8

284

-16

244

6

Kurskaya Oblast

333

27

-0.2

0.8

351

-21

359

0

Lipetskaya Oblast

329

29

-0.6

1.4

356

-20

349

5

Mordoviya Rep.

332

26

-1.7

2.0

318

-24

313

8

Novosibirskaya   Oblast

154

-20

-5.5

2.7

447

0

243

11

Nizhegorodskaya O.

298

10

-2.6

1.7

293

-23

286

5

Orenburgskaya   Oblast

254

10

-2.3

2.9

429

-19

322

17

Omskaya Oblast

165

-12

-4.9

3.0

428

0

257

16

Permskaya Oblast

296

7

-4.6

2.3

293

-16

240

11

Penzenskaya Oblast

354

33

-1.1

2.4

338

-23

336

13

Rostovskaya Oblast

258

4

2.7

1.4

552

-2

477

9

Ryazanskaya Oblast

339

26

-1.2

1.5

314

-24

323

3

Stavropolskiy Kray

206

-20

3.2

0.5

639

2

460

-2

Sverdlovskaya Oblast

217

3

-5.2

2.1

344

-11

235

8

Samarskaya Oblast

335

35

-1.6

2.9

348

-26

329

16

Saratovskaya Oblast

364

49

-0.1

2.8

385

-24

375

16

Tambovskaya Oblast

355

34

-0.5

1.9

364

-20

356

9

Tyumenskaya Oblast

190

-3

-5.0

2.6

386

-2

249

14

Tatarstan Rep.

329

27

-2.9

2.3

305

-23

283

11

Ulyanovskaya Oblast

336

37

-1.7

2.5

327

-25

319

14

Udmurtiya Rep.

314

12

-4.0

2.2

283

-20

252

10

Volgogradskaya O.

305

35

1.2

2.2

479

-12

426

13

Voronezhskaya   Oblast

310

22

0.3

1.6

434

-14

389

8

 

Table A.10  United States, January 2022 – April 2022 agroclimatic indicators and biomass (by state)


RAIN Current (mm)

RAIN 15YA Departure (%)

TEMP Current (°C)

TEMP 15YA Departure (°C)

RADPAR Current (MJ/m2)

RADPAR 15YA Departure (%)

BIOMSS Current (gDM/m2)

BIOMSS 15YA Departure (%)

Arkansas

567

7

8.7

-0.4

814

5

756

-1

California

126

-66

9.6

0.5

989

9

354

-33

Idaho

283

-22

-1.8

-1.1

720

1

323

-11

Indiana

445

-5

2.7

-0.5

698

2

497

-5

Illinois

456

8

2.2

-1.0

699

0

483

-8

Iowa

284

-8

-1.2

-1.4

684

-1

373

-13

Kansas

158

-27

5.8

-0.1

907

5

404

-17

Michigan

369

4

-2.5

-1.0

561

-8

305

-11

Minnesota

329

28

-6.2

-2.3

558

-11

232

-24

Missouri

441

9

4.5

-0.7

777

4

572

-4

Montana

242

4

-2.7

-0.8

702

-1

314

-7

Nebraska

138

-34

2.2

-0.1

840

3

372

-17

North Dakota

282

52

-5.5

-1.9

627

-6

252

-20

Ohio

422

-5

2.4

-0.2

696

4

484

-2

Oklahoma

276

-8

8.8

-0.4

903

5

533

-10

Oregon

384

-21

2.7

-0.7

683

4

431

-7

South Dakota

199

-7

-1.7

-1.0

731

-1

348

-8

Texas

183

-30

12.9

-0.6

966

5

468

-18

Washington

502

1

2.1

-0.8

566

-3

429

-4

Wisconsin

365

18

-4.4

-1.6

574

-9

271

-16

 

 

Table A.11  China, January 2022 – April 2022 agroclimatic indicators and biomass (by province)


RAIN Current (mm)

RAIN 15YA Departure (%)

TEMP Current (°C)

TEMP 15YA Departure (°C)

RADPAR Current (MJ/m2)

RADPAR 15YA Departure (%)

BIOMSS Current (gDM/m2)

BIOMSS 15YA Departure (%)

Anhui

481

45

9.1

0.7

769

-5

655

8

Chongqing

460

30

9.3

0.2

702

-2

718

13

Fujian

610

1

12.7

0.6

747

4

878

5

Gansu

179

36

0.6

0.2

916

-6

331

12

Guangdong

586

8

16.0

0.1

785

10

911

4

Guangxi

510

13

14.0

-0.2

646

4

847

6

Guizhou

421

4

9.0

-0.2

578

-7

721

3

Hebei

52

-1

0.6

-0.3

904

-3

207

2

Heilongjiang

124

19

-7.1

1.2

709

-5

240

15

Henan

199

39

8.0

0.6

854

-5

411

5

Hubei

494

45

8.7

0.4

738

-6

710

13

Hunan

623

19

10.0

0.1

632

-2

790

3

Jiangsu

286

24

8.8

0.9

854

0

570

5

Jiangxi

713

17

11.0

0.2

648

-5

843

2

Jilin

111

6

-5.1

0.4

808

-2

260

16

Liaoning

87

8

-2.1

-0.3

866

-1

247

10

Inner Mongolia

72

22

-6.5

0.3

841

-2

189

10

Ningxia

77

13

0.4

-0.1

979

-2

243

4

Shaanxi

166

23

4.8

0.7

893

-4

366

11

Shandong

48

-45

6.3

0.6

918

-1

227

-24

Shanxi

54

-19

1.4

0.5

930

-3

217

-10

Sichuan

446

55

7.2

0.3

802

-7

590

14

Yunnan

270

22

11.1

-0.2

998

-4

605

13

Zhejiang

594

16

9.7

0.6

709

-4

795

5