Bulletin

wall bulletin
Annex A. Agroclimatic indicators and BIOMSSAnnex

Authors: 超级管理员 | Edit: Changsheng

Annex A. Agroclimatic indicators and BIOMSS

Table A.1. April-July 2018agroclimatic indicators and biomass by global Monitoring and Reporting Unit.All values are averages (TEMP) or totals (RAIN, RADPAR, BIOMSS) over thereporting period

 

65 Global MRUs

RAIN Current(mm)

RAIN 15YA dep. (%)

TEMP Current (°C)

TEMP 15YA dep. (°C)

RADPAR Current(MJ/m2)

RADPAR 15YA dep. (%)

BIOMSS Current (gDM/m2)

BIOMSS 5YA dep. (%)

C01

Equatorial central Africa

364

-3

24.7

-0.1

1056

-2

1109

1

C02

East African highlands

518

-2

20.3

-0.6

1135

-2

1449

0

C03

Gulf of Guinea

660

4

27.5

-0.8

1011

-7

1750

2

C04

Horn of Africa

279

51

22.8

-1.2

1104

-3

756

26

C05

Madagascar (main)

258

29

21.9

-0.5

904

-2

756

26

C06

Southwest Madagascar

67

-4

21.6

-0.5

965

0

270

-1

C07

North Africa-Mediterranean

121

30

20.2

-1.5

1405

-7

442

23

C08

Sahel

424

21

31.2

-0.8

1277

-6

1183

15

C09

Southern Africa

127

36

19.8

-0.2

952

-2

332

9

C10

Western Cape (South Africa)

73

-53

13.7

0.8

681

0

325

-44

C11

British Columbia to Colorado

221

6

11

0.5

1352

-5

850

4

C12

Northern Great Plains

421

13

16.7

-0.2

1319

-1

1276

8

C13

Corn Belt

389

-11

16.2

-0.4

1225

0

1269

-9

C14

Cotton Belt to Mexican Nordeste

439

-5

23.3

-0.4

1288

-2

1326

-2

C15

Sub-boreal America

257

-13

10.7

-0.2

1190

0

1032

-9

C16

West Coast (North America)

92

-23

15.6

0.3

1456

-2

337

-20

C17

Sierra Madre

347

-12

21.1

-0.2

1414

-2

1021

-3

C18

SW U.S. and N. Mexican highlands

129

3

21.5

0.7

1528

-3

495

2

C19

Northern South and Central America

764

-2

26.9

-0.8

1120

0

1641

-5

C20

Caribbean

744

7

26.2

-0.8

1251

-5

1593

-7

C21

Central-northern Andes

362

-8

14.8

-0.3

987

1

837

1

C22

Nordeste (Brazil)

164

-22

26.2

0

1010

0

496

-22

C23

Central eastern Brazil

177

-29

23.6

-0.5

971

4

545

-28

C24

Amazon

659

3

26.7

-0.9

966

1

1451

-3

C25

Central-north Argentina

199

71

16.9

-0.6

701

0

478

28

C26

Pampas

433

5

16.2

0.3

642

-4

1068

3

C27

Western Patagonia

328

-27

5.8

-1.1

461

-4

894

-2

C28

Semi-arid Southern Cone

99

38

9.4

-0.3

656

-2

340

18

C29

Caucasus

197

-14

17.7

0.6

1353

0

761

-12

C30

Pamir area

229

7

17.4

-0.5

1422

-4

700

-2

C31

Western Asia

98

7

23

-0.5

1423

-3

377

3

C32

Gansu-Xinjiang (China)

217

43

17.6

-0.4

1272

-9

730

36

C33

Hainan (China)

1121

53

26.8

-1.3

1102

-6

2003

17

C34

Huanghuaihai (China)

442

10

23

0.4

1067

-15

1277

7

C35

Inner Mongolia (China)

343

24

17.2

0.8

1178

-8

1129

13

C36

Loess region (China)

330

16

18.5

0

1101

-14

1162

11

C37

Lower Yangtze (China)

859

-2

23.9

0.1

1015

-5

1923

1

C38

Northeast China

327

-7

16.6

0.4

1097

-7

1187

1

C39

Qinghai-Tibet (China)

770

8

11.7

0.1

1169

-2

1263

5

C40

Southern China

837

-6

23.9

-0.5

1007

-2

1913

0

C41

Southwest China

638

3

20.8

0

985

-4

1667

2

C42

Taiwan (China)

682

-28

24.4

-0.1

1140

1

1465

-15

C43

East Asia

356

-24

15.5

0.1

1082

-5

1135

-13

C44

Southern Himalayas

997

14

26.4

-0.6

1084

-5

1658

5

C45

Southern Asia

827

21

29.5

-0.6

1111

-3

1533

13

C46

Southern Japan and Korea

682

-8

20

0.6

1100

0

1577

-9

C47

Southern Mongolia

364

84

16.3

-0.2

1411

-2

933

37

C48

Punjab to Gujarat

446

26

32.2

-0.3

1253

-7

875

13

C49

Maritime Southeast Asia

868

-8

25.8

-0.5

972

-2

1921

-7

C50

Mainland Southeast Asia

1054

15

27.7

-1.1

1029

-5

1997

2

C51

Eastern Siberia

198

-17

9.4

-0.4

1067

-7

890

-11

C52

Eastern Central Asia

292

26

11.1

0.2

1140

-8

1050

10

C53

Northern Australia

116

-52

24.2

-0.4

1024

3

403

-38

C54

Queensland to Victoria

83

-51

12.9

0.3

704

4

366

-42

C55

Nullarbor to Darling

164

-23

14

0.1

667

0

586

-20

C56

New Zealand

189

-38

9.2

0

451

-4

727

-22

C57

Boreal Eurasia

225

-22

11.1

1.9

1115

5

920

-14

C58

Ukraine to Ural mountains

237

-4

15.6

0.4

1169

4

975

-5

C59

Mediterranean Europe and Turkey

202

23

18

1

1345

-5

745

13

C60

W. Europe (non Mediterranean)

275

-5

16.5

1.4

1192

3

1034

-7

C61

Boreal America

365

27

6.6

0.2

966

-7

1020

3

C62

Ural to Altai mountains

239

11

12.6

-1.8

1139

-6

988

10

C63

Australian desert

73

-24

14.5

0.2

742

5

342

-20

C64

Sahara to Afghan deserts

75

63

29.1

-0.6

1478

-4

269

42

C65

Sub-arctic America

156

62

-6.2

-0.3

537

-3

568

113

AFG

Afghanistan

55

-30

20.2

-0.5

1529

-3

184

-32

AGO

Angola

147

20

22.9

1.7

1087

-3

413

24

ARG

Argentina

396

79

14.4

-0.1

610

-7

829

33

AUS

Australia

94

-45

14

0.2

728

3

399

-36

BGD

Bangladesh

1781

23

28.2

-1.4

947

-7

2444

13

BLR

Belarus

288

5

16.4

1.4

1129

4

1108

-4

BRA

Brazil

308

-16

24.1

-0.4

958

2

776

-18

CAN

Canada

245

-18

11

-0.1

1214

1

978

-10

CHN

China

633

1

21

0.1

1049

-6

1423

5

DEU

Germany

194

-33

16.9

1.8

1198

9

834

-28

EGY

Egypt

11

49

24.7

0.5

1553

-3

57

47

ETH

Ethiopia

532

-9

21.5

-0.4

1162

0

1521

-2

FRA

France

266

-1

16.3

1.7

1205

0

1007

-3

GBR

United Kingdom

251

-15

13.1

1.6

1053

4

1006

-13

HUN

Hungary

343

21

19.4

1.3

1235

3

1234

12

IDN

Indonesia

858

-10

25.7

-0.6

949

-2

1851

-8

IND

India

808

17

29.7

-0.4

1146

-4

1377

10

IRN

Iran

75

-10

21.7

-0.4

1424

-5

300

-2

ITA

Italy

287

16

19.4

0.5

1269

-4

999

11

KAZ

Kazakhstan

193

10

14.7

-1.6

1229

-3

804

8

KEN

Kenya

508

48

20.8

-1.2

1055

-5

1194

20

KHM

Cambodia

857

-1

28.4

-1.4

1053

-6

2064

-1

LKA

Sri_Lanka

704

45

27.7

-0.9

1099

-4

1403

18

MAR

Morocco

91

22

18.2

-2.3

1417

-8

329

11

MEX

Mexico

401

-9

24.6

-0.4

1372

-2

989

-3

MMR

Myanmar

1221

20

26.6

-0.8

981

-5

1973

5

MNG

Mongolia

307

40

11.3

0.5

1231

-5

1089

18

MOZ

Mozambique

164

61

22.9

-0.6

926

-2

448

31

NGA

Nigeria

678

10

28.5

-0.8

1066

-8

1691

6

PAK

Pakistan

240

5

27.9

-0.6

1352

-7

593

2

PHL

Philippines

871

-5

26.7

-0.5

1123

-2

1901

-3

POL

Poland

238

-12

16.8

1.8

1172

8

928

-17

ROU

Romania

369

14

17.7

0.9

1231

1

1253

5

RUS

Russia

241

-1

13.9

-0.4

1143

-1

1002

-1

THA

Thailand

839

11

27.6

-1.2

1050

-5

1990

4

TUR

Turkey

257

37

18.2

1

1402

-1

892

17

UKR

Ukraine

246

0

18.2

1.1

1240

6

946

-6

USA

United States

396

1

19

-0.2

1301

-2

1151

2

UZB

Uzbekistan

115

5

21.8

-0.5

1414

-2

425

2

VNM

Vietnam

926

11

26.5

-0.8

1024

-6

1967

1

ZAF

South Africa

69

-19

14

0.1

834

-1

298

-15

ZMB

Zambia

76

23

21

-0.4

1060

-3

256

17

Buenos Aires

397

81

11.9

0.3

503

-14

1070

46

Chaco

493

90

18.1

-0.1

720

4

809

8

Cordoba

232

92

13.3

-0.3

583

-13

647

48

Corrientes

529

24

17.5

-0.1

672

-2

1208

6

Entre Rios

637

93

15.1

0.1

575

-11

1265

37

La Pampa

216

62

11.6

0.1

518

-15

687

43

Misiones

315

-54

18.6

0.4

727

2

1034

-35

Santiago Del Estero

376

281

16.5

-0.3

671

-3

588

65

San Luis

166

57

11.4

-0.5

597

-11

512

28

Salta

211

201

16.4

-0.5

779

4

484

103

Santa Fe

684

193

15.7

0.1

611

-8

988

39

Tucuman

59

-13

14.7

-0.4

751

2

242

1

New South Wales

73

-56

12.7

0.5

736

6

311

-48

South Australia

113

-33

13

0.2

613

3

472

-28

Victoria

120

-41

11

0.1

545

0

509

-32

W. Australia

154

-24

14.8

0.1

702

1

561

-20

 

Ceara

317

-2

27.3

-0.2

1072

-1

882

-9

Goias

169

8

23.4

-0.9

1065

4

520

0

Mato Grosso Do Sul

150

-53

23.4

-0.2

936

5

516

-48

Mato Grosso

209

-4

25.7

-1.1

1055

4

638

-10

Minas Gerais

96

-30

21.8

-0.2

942

1

365

-26

Parana

171

-70

20.1

1.1

823

6

601

-58

Rio Grande Do Sul

534

-8

16.9

0.5

644

-4

1519

1

Santa Catarina

285

-51

17

0.7

721

4

954

-35

Sao Paulo

85

-71

21.7

0.6

906

5

369

-61

Table A.6. Canada,April-July 2018 agroclimatic indicators and biomass (by province). All valuesare averages (TEMP) or totals (RAIN, RADPAR, BIOMSS) over the reporting period

Alberta

220

-17

11.2

0

1228

-2

933

-12

Manitoba

236

-22

12.4

0.2

1269

3

965

-17

Saskatchewan

201

-24

11.8

0.1

1253

1

850

-19

 

Andhra Pradesh

509

16

30.9

-0.6

1153

-3

1263

6

Assam

1690

5

28.6

0

973

6

2347

-6

Bihar

697

2

30.7

-1.4

1157

-5

1376

-3

Chhattisgarh

825

20

30.3

-0.7

1143

-2

1630

17

Daman and Diu

975

28

29.5

-0.5

1209

-2

950

-1

Delhi

510

58

32.7

-0.3

1214

-10

1140

18

Gujarat

475

-3

31.8

0.1

1267

-1

760

-6

Goa

1015

-23

26.3

-0.5

999

-2

1790

9

Himachal Pradesh

632

6

17

0.7

1285

-8

1326

6

Haryana

435

34

31.6

-0.5

1211

-11

1150

19

Jharkhand

790

16

29.7

-1.1

1140

-6

1781

20

Kerala

1330

18

25.8

-0.9

904

-4

2350

13

Karnataka

723

11

26.6

-0.8

1063

-4

1512

12

Meghalaya

2351

0

24.6

-0.3

936

-1

2463

2

Maharashtra

776

13

30.1

-0.1

1151

-2

1323

11

Manipur

1019

0

22.8

-0.2

973

-3

2005

-4

Madhya Pradesh

809

36

31.8

-0.1

1204

-2

1286

16

Mizoram

1838

30

23.3

-1.2

990

-5

2266

1

Nagaland

1404

10

22.4

0.3

991

1

2185

-2

Orissa

928

23

29.7

-0.8

1103

-4

1922

19

Puducherry

121

-48

31

-0.3

1249

-1

537

-17

Punjab

378

16

30.6

-0.3

1219

-11

1120

20

Rajasthan

498

60

33.1

-0.3

1242

-9

921

20

Sikkim

985

-16

12.5

-1.7

1055

-14

1242

-10

Tamil Nadu

388

14

29.5

-0.6

1184

-3

1170

7

Tripura

2270

29

27.1

-1.3

932

-4

2595

8

Uttarakhand

763

4

20.4

0.2

1239

-5

1381

5

Uttar Pradesh

696

33

32.1

-0.3

1217

-6

1214

8

West Bengal

1279

21

29.7

-1.1

1044

-7

2249

19

 

Akmolin skaya

182

10

13

-2.2

1153

-6

820

10

Karagandinskaya

200

16

13

-2

1226

-2

902

15

Kustanayskaya

149

-5

14

-2.1

1180

-3

670

-5

Pavlodarskaya

212

30

13.5

-2.3

1121

-8

952

31

Severo kazachstanskaya

231

13

12.5

-2.3

1082

-8

979

10

Vostochno kazachstanskaya

242

14

12.7

-1.2

1282

-2

956

13

Zapadno kazachstanskaya

94

-18

18.1

-0.5

1288

4

482

-13

 

Table A.9. Russia, April-July2018 agroclimatic indicators and biomass (by oblast).All values are averages(TEMP) or totals (RAIN, RADPAR, BIOMSS) over the reporting period

Bashkortostan Rep.

230

2

13

-1.4

1136

-2

1029

6

Chelyabinskaya Oblast

211

-5

12.4

-1.9

1090

-5

956

0

Gorodovikovsk

306

5

21

1.1

1352

10

1063

-7

Krasnodarskiy Kray

188

-31

15.4

0.2

1196

0

844

-23

Kurganskaya Oblast

223

2

12.2

-2.2

1079

-6

1010

8

Kirovskaya Oblast

298

15

12.3

-1

1075

-1

1188

9

Kurskaya Oblast

227

-1

16.5

0.2

1202

5

959

-4

Lipetskaya Oblast

209

-5

16

0.2

1201

5

929

-4

Mordoviya Rep.

201

-15

14.8

-0.3

1169

3

909

-11

Novosibirskaya Oblast

295

37

11.3

-2

1069

-8

1220

31

Nizhegorodskaya O.

223

-11

14.3

-0.2

1132

3

962

-9

Orenburgskaya Oblast

136

-16

15.2

-1

1231

2

656

-10

Omskaya Oblast

239

8

11.4

-2.1

1063

-7

1029

7

Permskaya Oblast

297

9

11.6

-1.2

1052

-4

1251

10

Penzenskaya Oblast

193

-13

15.1

-0.4

1174

2

867

-11

Rostovskaya Oblast

181

-12

19.5

0.6

1323

9

756

-15

Ryazanskaya Oblast

195

-19

15.4

0.2

1173

5

882

-15

Stavropolskiy Kray

200

-23

20.5

1

1321

8

847

-20

Sverdlovskaya Oblast

262

0

11.5

-1.7

1049

-5

1122

3

Samarskaya Oblast

144

-25

15.1

-0.8

1217

3

687

-19

Saratovskaya Oblast

156

-7

16.8

-0.4

1237

4

683

-11

Tambovskaya Oblast

204

-6

15.8

0

1191

4

922

-4

Tyumenskaya Oblast

218

-8

11.5

-2

1076

-5

971

-4

Tatarstan Rep.

215

0

13.8

-1.2

1155

0

915

-2

Ulyanovskaya Oblast

180

-14

14.9

-0.6

1190

3

793

-14

Udmurtiya Rep.

284

16

12.4

-1.3

1079

-3

1172

12

Volgogradskaya O.

174

8

18.6

0

1269

5

679

-8

Voronezhskaya Oblast

217

9

17.1

0.4

1211

4

897

1

 

 

 

Table A.10. UnitedStates, April-July2018 agroclimatic indicators and biomass (by state). All values are averages(TEMP) or totals (RAIN, RADPAR, BIOMSS) over the reporting period

Arkansas

440

-14

23

-0.2

1308

0

1523

1

California

79

-7

17

0.3

1569

-2

268

-10

Idaho

188

18

12.5

0.2

1404

-5

752

11

Indiana

410

-18

19.1

-0.3

1247

-2

1374

-9

Illinois

456

-7

19.3

-0.5

1277

-2

1401

-5

Iowa

551

5

17.6

-0.6

1276

-2

1499

-2

Kansas

524

15

20.7

-0.2

1365

-1

1497

11

Michigan

236

-33

14.4

-0.3

1267

0

896

-28

Minnesota

519

33

14.7

-0.6

1273

2

1475

13

Missouri

443

-20

20.9

-0.1

1303

-1

1428

-9

Montana

275

22

12.9

-0.4

1323

-5

1095

18

Nebraska

607

47

17.6

-0.5

1316

-4

1667

25

North Dakota

450

53

14.5

0

1323

2

1447

31

Ohio

407

-10

18.2

-0.3

1210

-3

1451

-2

Oklahoma

486

-2

22.8

-0.4

1373

0

1475

7

Oregon

120

-18

14.2

0.6

1375

-2

552

-7

South Dakota

516

49

16.2

-0.4

1309

-3

1588

31

Texas

268

-22

25.3

0.1

1397

1

914

-12

Washington

111

-23

14.4

0.4

1313

-3

512

-11

Wisconsin

457

3

14.8

-0.6

1260

1

1286

-9

 

Table A.11. China, April-July2018 agroclimatic indicators and biomass (by province). All values are averages(TEMP) or totals (RAIN, RADPAR, BIOMSS) over the reporting period

Anhui

730

1

23.8

0.2

1031

-11

1725

2

Chongqing

698

4

21.6

0.3

953

-5

1856

3

Fujian

993

3

23.4

0.3

1037

0

1972

-2

Gansu

928

-14

25.4

-0.2

1021

2

1924

-8

Guangdong

319

21

15.9

0

1125

-11

1023

12

Guangxi

904

-10

24.9

-0.5

971

-1

2107

3

Guizhou

638

-9

21.5

0.3

964

0

1689

-3

Hebei

387

19

20.4

0.5

1106

-13

1224

11

Heilongjiang

464

7

23.3

0.1

1026

-16

1414

9

Henan

348

9

15.9

0.3

1098

-6

1205

7

Hubei

656

-4

22.8

0.2

994

-10

1710

-2

Hunan

771

-6

23.7

0.1

984

-4

1953

2

Jiangsu

310

-17

17.4

0.7

1101

-7

1163

-4

Jiangxi

524

-6

23.1

0.2

1034

-12

1425

-2

Jilin

1032

2

24.7

0.2

1026

-3

2149

4

Liaoning

295

-26

18.8

0.5

1092

-10

1113

-12

Inner Mongolia

328

23

16.5

0.8

1179

-7

1118

15

Ningxia

212

36

17.9

0.2

1182

-13

767

19

Shaanxi

756

32

19.3

0

999

-4

1673

9

Shandong

429

9

22.4

0.3

1090

-14

1240

6

Shanxi

379

6

19.4

-0.1

1045

-14

1218

4

Sichuan

324

11

18.4

0.3

1110

-15

1134

7

Yunnan

563

-2

19.3

-0.7

1045

-3

1569

1

Zhejiang

976

18

23.1

0.3

1020

-5

2050

8